Loong Kuan Lee

	Education
2019–2023	Doctor of Philosophy (PhD), Monash University, Melbourne
2015–2018	Bachelor of Informatics and Computation Advanced (Honours) , <i>Monash University</i> , Melbourne, Final Mark - 88/100 Specialised in Computer Science and Statistics & Probability. Graduated with First Class Honours.
	Doctoral Thesis
title supervisors year	<i>Computing Divergences between High Dimensional Graphical Models</i> Geoff Webb, Daniel Schmidt, Nico Piatkowski 2023
descripion	We develop a method for computing the joint, marginal, and conditional $\alpha\beta$ -divergences, a family of divergences that include the Kullback-Leibler divergence and the Hellinger distance. We then apply this method to modifying the parameters of a decomposable model such that the resulting model is some target amount of divergence away from the original.
	Honours thesis
title	Generating Concept Drift by Shuffling Instances
supervisors	Geoff Webb
year	2018
description	We propose a method for shuffling the instances in a dataset such that the divergence between the empirical distribution of the first and second half of the resulting dataset reaches some target amount of divergence.
	Experience
	Academia
2016–2017	Undergraduate Research Assistant , <i>Monash University</i> , Melbourne Researched Concept Drift , specifically how to measure and visualise concept drift in both streaming and static data. Tasks: - Developed a system to incrementally measure changes to the probability distributions of
	 a data set over time, using Java and the library Weka . Developed a companion web application for the system above using Scala with the Play Framework , Javascript , and HTML .

- Used ${\bf R}$ extensively to visualise results and produce reports.

Industry

2016 Winter Research Project, Agilent & Monash University, Melbourne

Developed application to compare and analyse large groups of timeseries data over the same domain, using ${\bf R}$ and ${\bf Shiny}$.

2017 Software Tester, Carsales, Melbourne

Tested backend APIs being developed to move product from a monolith to a microservice architecture. Helped develop a prototype model to predict car deprecation. Tasks:

- Created automated tests for APIs in CI pipeline using Postman , Node.js , and Jenkins

- Carried out performance testing of APIs using Scala and Gatling .
- Managed communication across multiple teams to track bugs reported by consumers of the backend APIs and bugs I found in systems the APIs depend on.
- Developed prototype to predict the depreciation of a car using ${\bf R}$, Azure ML Studio , and Vue.js .

Scholarship & Awards

- 2015 Faculty of IT International Merit Scholarship
- 2015 Dean's Achievement Award
- 2016 Summer Research Scholarship Faculty of IT
- 2016 Winter Research Scholarship Faculty of IT
- 2017 Information Technology IBL (Industry Based Learning) Placement Scholarship
- 2017 Dean's Achievement Award
- 2019 Australian Government RTP (Research Training Program) Scholarship

Publications

Published

Loong Kuan Lee, Geoffrey I. Webb, Daniel F. Schmidt, and Nico Piatkowski. Computing Marginal and Conditional Divergences between Decomposable Models with Applications. In *2023 IEEE International Conference on Data Mining (ICDM)*, pages 239–248, December 2023.

Loong Kuan Lee, Nico Piatkowski, François Petitjean, and Geoffrey I. Webb. Computing divergences between discrete decomposable models. *Proceedings of the AAAI Conference on Artificial Intelligence*, 37(10):12243–12251, June 2023.

Geoffrey I. Webb, Loong Kuan Lee, Bart Goethals, and François Petitjean. Analyzing concept drift and shift from sample data. *Data Mining and Knowledge Discovery*, 32(5):1179–1199, September 2018.